The Many Faces of Alternating-Sign Matrices

نویسنده

  • James Gary Propp
چکیده

I give a survey of different combinatorial forms of alternating-sign matrices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, threecolorings, monotone triangles, tetrahedral order ideals, square ice, gasketand-basket tilings and full packings of loops. (This article has been published in a conference edition of the journal Discrete Mathematics and Theoretical Computer Science, entitled “Discrete Models: Combinatorics, Computation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Mathématiques Discrètes, Paris, France: ISSN 13658050, http://dmtcs.lori.fr.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h . C O / 0 20 81 25 v 1 1 5 A ug 2 00 2 The many faces of alternating - sign matrices

I give a survey of different combinatorial forms of alternating-sign matrices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, threecolorings, monotone triangles, tetrahedral order ideals, square ice, gasketand-basket tilings and full packings of loops. (This article has been published in a conference edition of t...

متن کامل

The Alternating Sign Matrix Polytope

The Birkhoff (permutation) polytope, Bn, consists of the n × n nonnegative doubly stochastic matrices, has dimension (n− 1)2, and has n2 facets. A new analogue, the alternating sign matrix polytope, ASMn, is introduced and characterized. Its vertices are the Qn−1 j=0 (3j+1)! (n+j)! n × n alternating sign matrices. It has dimension (n− 1)2, has 4[(n− 2)2 +1] facets, and has a simple inequality d...

متن کامل

Pattern Avoidance in Alternating Sign Matrices

We generalize the definition of a pattern from permutations to alternating sign matrices. The number of alternating sign matrices avoiding 132 is proved to be counted by the large Schröder numbers, 1, 2, 6, 22, 90, 394 . . .. We give a bijection between 132-avoiding alternating sign matrices and Schröder-paths, which gives a refined enumeration. We also show that the 132, 123avoiding alternatin...

متن کامل

Affine Alternating Sign Matrices

An Alternating sign matrix is a square matrix of 0’s, 1’s, and −1’s in which the sum of the entries in each row or column is 1 and the signs of the nonzero entries in each row or column alternate. This paper attempts to define an analogue to alternating sign matrices which is infinite and periodic. After showing the analogue we define shares desirable cahracteristics with alternating sign matri...

متن کامل

Symmetric alternating sign matrices

In this note we consider completions of n×n symmetric (0,−1)-matrices to symmetric alternating sign matrices by replacing certain 0s with +1s. In particular, we prove that any n×n symmetric (0,−1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with +1s can be completed to a symmetric alternating sign matrix. Similarly, any n × n symmetric (0,+1)-matrix that can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001